CHARACTERISTIC DIMENSION AND FORM
FACTOR OF A SOLID HOMOGENEOUS BODY
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Equations for the characteristic dimension and the form factor of a real body are derived
on the basis of an approximate geometrical similarity between it and a reference model.

The unified solutions to heat conduction problems [1-3] for bodies of canonical shapes (plate, cylin-
der, and sphere) can be extended to the case where a body is subject to more than one thermal effect, and
can be used for approximately calculating the characteristic temperature parameters (mean-over-the-sur-
face, mean-over-the-volume, and cenfer temperature),

The thermal state of bodies with a three-dimensional temperature distribution was analyzed by 2 re~
petitive use of the one-dimensional solution {6, 7}. The bodies under consideration were classified into
three groups, their respective principal representatives being an infinitely large plate, an infinitely long
cylinder, and a sphere. A real body was compared to each of these models, in order to establish the con-
ditions of approximate geometrical similarity (comparison based on surface area or volume) and physical
similarity (comparison based on thermal fluxes or form factors),

An application of these basic principles results in a small error in temperature calculations only
when the body is entirely identical to any one of these three canonical modeis. As a rule, exact and ap-
proximate temperatures are compared just for such "favorable" cases with moderate values of the heat
transfer coefficient. There are many bodies, however, which do not quite fit into these three basic
classes, A typical example is a rectangular parallelepiped with the ratio of sides 1:2:3.

We propose here a new procedure for establishing the approximate geometrical similarity, which
will extend the applicability of one-dimensional solutions to the equation of heat conduction.

We are to determine two geometrical parameters in the unified solutions, namely the characteristic
dimension R and the form factor n of a body [4].

A real solid homogeneous body will be characterized by its surface area S, its total volume V, and
three orthogonal linear segments (dimensions) 2L,, 2L,, 2L (e.g., length, width, and height). Depending
on the shape, we will refer the body to one of the three classes represented respectively by a triaxial
ellipsoid with semiaxes a, b, ¢, an infinitely long elliptical cylinder with semiaxes b, ¢, and an infinitely
large (in two directions) plate with the thickness 2c. The problem of classifying a given body will be solved
on the basis of its dimensional proportions.

Let us assume that a certain body belongs to the class of ellipsoids. Then its characteristic dimen-
sion R and form factor n are determined on the basis of the following considerations:

1. The basic half-dimensions of the body are proportional to the ellipsoid semiaxes

%1. — .%2_ _ %'.(L1 <Ly<Ly ¢ < b< a); (1)

2. the characteristic dimension of the body is equal to the characteristic dimension of the ellipsoid
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TABLE 1. Values of the Function <I>(k1’2;, ky 9

k1,3

e r ] o9 | o8 | 07 ] o6 | o5 | ot | 03 |02 | o1 ] o

0,283 10,280 10,275 | 0,267 | 0,254 [0 237 {0,214 10,186 | 0,152 | 0,107
0,280 | 0,280 |0,271 {0,270 |0 258 {0,241 (0,221 {0,190 | 0,155 | 0,109
0,275 10,271 10,274 0,269 | 0,257 |0,242 ;0,219 [0,191 j0,157 | 0,110
0,267 0,270 0,269 (0,264 | 0,254 (0,239 {0,217 {0,191 {0,155 | 0,110
0,254 10,258 {0,257 | 0,254 0,246 j0,232 | 0,212 0,185 ;0 150 {0,106
0,237 10,241 10,242 10,239 {0,232 | 0,219 | 0,199 0,17a 0,143 ]0,100
0,214 |0,221 10,219 0,217 10,212 10,199 10,183 [ 0,160 | 0,130 | 0,031
0,186 | 0,190 {0,191 }0,191 | 0,185 |0,175 ;0,160 | 0,140 | 0,114 | 0,080
0,152 | 0,155 {0,157 10,155 {0,150 10,143 | 0,130 [0,114 | 0,092 0,064
0,107 |0,109 |0,110 |0,110 | 0,106 | 0,100 | 0,091 {0,080 | 0,064 | 0,045
0 10 0 0 0 0 0 0 0 0
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TABLE 2. Values of the Function ®(k, )

B | 1 1 os | o8 | oz | 0s | 05 ] 04 | o3 | 02 | 01 | o

o (k,,a)‘o,lsg ‘0,158 lo,154 ‘0,147 l0,136 ‘0,121 |0,102 ’0,079 ‘0,054 10,027 \ 0

3. the real body and the ellipsoid have equal surfaces

§=58g 3)
4. the geometrical characteristics of the body, as has been shown in [4], are related as follows:
14 R
s n--1 ) . 4)
The system of Egs. (1)-(4) is not closed and, therefore, we solve the additional problem of deter-
mining the characteristic dimension Rg and the form factor ng of the ellipsoid. Inserting the known ex-
pressions for the volume and the surface area of a triaxial ellipsoid into Eq. (4), we find
Rg_2 nE_.___—'_ 1 (5)
4 3 k1 2"’1,3f (kl 2 1 3)
Here and subsequently k; , and k1’3 denote respectively the following ratios according to (1):
c L c L
k1,2 = T = ‘L-:" k1,3‘f"= 7 = 'Lf(kx,z > k1,3)’ (6)
k 1 VI—E
Bygy Byg =1-4+208 . — - Fu, k) 4+ ———L3 Fu, &
f( 1,2 1,3) ; kl’z Vl——-k%,3 (p‘ ) s kl‘zkl_a (p‘ ): (7)
where
v e e 1 — k2
w=arcsinV1—%, k= ‘/———ké—z,
1— 1,3

F(p, k) and E(u, k) are incomplete elliptic integrals of the first and second kind respectively.

As the auxiliary relation we may use the equations for the form factors K, and K, of an ellipsoid in
regular modes of the first or the second kind:

1 - 247(14+0. 162nE)(nE+ 1) 3 29
= Ry (8)
Kl R2E C ( b2 )
1 5
_Lr_(iﬂli‘_(ﬁ‘é“.‘_)___(1+k12+kla) (9)
K, RE\ S c?
Selecting, for example, Eq. (9) and solving it simultaneously with (5), we obtain
Rp_ 4 . _ 1 , : (10)
¢ 3 (WD ky oky of (klfz; k.
_ 3—9¢g 20 14K +K

ng=ST9E o= 2. 11
£ (p.E—I B9 [Ry.oRy of (Ry0s Ry )1
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Fig. 1. Relative error in calculating the cenier temperatui-e
of: (a) a parallelepiped with k1’3 =1.0 (1), 0.5 (2}, 0.1 (3) on
the basis of formula (12) (¥ (ki,zi ki,g) =%0); 1.0 (4), 0.5 (5),
0.1 (6) on the basis of an elliptical cylinder, 1.0 (7), 0.5 (8)
an the basis of an ellipsoid; (b) a finite-length cylinder accord-
ing to formula (12) (1), on the basis of an elliptical cylinder (2),
on the basis of an ellipsoid (R = C) (3).
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Solving the system of Egs. (1)-(4) and (10), we find the sought dimension R and factor n of the real
body

e ’ SV'S
R=V3®(byy ky) n= ‘{Tcp(/em; by — 1. (12)

Values of the function ®(ky o, ki 3)
4 1
W (g Dl s kg™

@ (k1,2§ Ry ,ia) (13)

are listed in Table 1.

If 2 real body belongs to the class of elliptical cylinders, then its characteristic parameters R and n
are determined by the same method, with the specifics of the basic model taken into account. Equations (1)
and (2) are rewritten as

L _ Ly

c b
and Eq. (4) remains valid with respect to the real body and the basic model. Instead of equating the surface
areas, we stipulate equal perimeters of the cross sections F and F, normal to the longest dimension 2Ly
of the real body and to the axis of the elliptical cylinder respectively:

, R=Re(e<b, L < L] (14)

F=F, (15)

In order to find the parameters R, and ng of the elliptical cylinder, we modify Egs. (5), (8), and (9)
as follows: :

Re o g+l ,k”:vc—:i; (16)
4 4 _f(kl,2) ’ b Ly
1 247(1 + 0,162n)(nc -+ 1) 2.89° 2

— = 14, 17

K R% ¢t (14 o
I (3 i l’lc)(ﬂc 1 '1) 4 { 2
SR A A 14 e S S 6 R - {18
K, R: & h

where f(k; ,) = 16‘,(»/1—k1z ,) i8 a complete elliptic integral of the second kind.

From Egs. (16) and (18) follows
Rc . T 1 3_'CPC

———— = 19
¢ 2 (e — 1) f (k1,9 e ¢.— 1 a9

where

P 1 4o . (20)

367



TABLE 3. Values of the Functions ®y(ky ; ki g)

k1,3
] es | 08 | o7 | o6 | o5 | o4 | 03 | 02 | o1}

k1,9

<

0,283 10,272 {0,261 {0,248 {0,233 |'0,216 {0,196 | 0,171 | 0,141 | 0,100
0,272 10,263 | 0,253 | 0,240 | 0,226 {0,209 {0,189 {0,166 | 0,137 {0,008
0,261 {0,253 {0,242 0,230 {0,217 | 0,202 | 0,183 |0,161 {0,133 | 0,094
0,248 10,240 | 0,230 | 0,220 | 0,207 | 0,193 | 0,175 | 0,154 0,127 |0,091
0,233 {0,226 {0,217 {0,207 | 0,196 {0,182 | 0,166 0,146 |0,121 | 0,086
0,216 10,209 0,202 {0,193 |0,182 {0,170 | 0,155 | 0,136 {0,113 | 0,081
0,196 10,189 10,183 {0,175 {0,166 {0,155 | 0,141 [0,125 | 0,104 | 0,074
0,171 {0,166 | 0,161 | 0,154 {0,146 10,136 | 0,125 }0,110 | 0,092 | 0,066
0,141 10,137 (0,133 10,127 {0,121 {0,113 [0 104 {0,092 {0,076 | 0,055
0,100 {0,098 } 0,094 {0,091 | 0,086 {0,081 |0,074 {0,066 | 0,055 {0,039

0 0 0 0 0 0 0 0 0 0
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Parameters R and n of a real body in the class of elliptical cylinders are found by solving the system

of Egs, (14), (15), (19) and then from the following relations:
R=FO @, n =L 01, (21)

with V and S denoting the volume and the surface area of the real body. Values of the function &k, )

@ (ky,e) = e

U LN 22
ER Ry 22)
are listed in Table 2.

If a real body belongs to the class of plates, then its parameters are determined from the formulas

R=Ly,n=22—1, (23)

where Ly, S, and V denote its smallest half-dimension, its surface area, and its volume respectively.

There are no precise criteria for classifying bodies into ellipsoids, elliptical cylinders, and plates,
For this reason, the applicability ranges of the proposed formulas (12), (21), and (23) are defined on the
basis of a comparison between exact and approximate temperature values for bodies in the shape of paral-
lelepipeds and finite-length cylinders with sides ratios varying within wide limits, The steady-state mean-
over-the-surface and center temperatures were calculated for the case with a uniform distribution of heat
sources over the body volume and with the coefficient of heat transfer from the surface assumed infinite

i81.

On this basis, we make the following recommendations. When the ratios (6) of orthogonal linear seg-
ments (dimensions) of a body are '

04 <hyy<1, 04 <k y< 1, (24)

then the body is to be classified as an ellipsoid with the characteristic dimension and the form factor cal-
culated according to Eq. (12).

When the dimensions ratios are
02k <1, 0k, <04 (25)
then the body is to be classified as an elliptical cylinder with R and n calculated according to Eq. (21).
When
0< k<02 0Lk ,<02 (26)

then the body is to be classified as a plate and formula (23) will apply. Thus, with a choice of linear seg-
ments satisfying the condition

9L, < 2L, < 2L,

inequalities (24)-(26) cover the entire range of possible deformations of a real body with the dimensions
ratios varying within the square

0L by <], 0 gy < 1.
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An examination of the results has shown that, when condifions (24)-(26) prevail, the maximum dif-
ference between exact and approximate values of the steady-state temperature for parallelepipeds (Fig. 1a)
and for finite-length cylinders (Fig. 1b) occur at the boundary between ranges (24) and (25): up to 16% for
the center temperature and 10% for the mean-over-the-volume temperature, becoming much less farther
away from this boundary, Within range (24) the approximate center temperature is higher while the ap-
proximate mean-over-the-volume temperature is lower than the respective exact temperature. The situa-
tion reverses within range (25).

It has been established that the calculated values change slightly, if formulas (12) and (21) are de-
rived from relations (8) and (17) instead of (9) and (18).

It is possible to establish the approximate geometrical similarity between a real body and an ellip-
soid by a simpler but less accurate method. As the characteristic dimension of the bedy is sejected the
smallest semiaxis ¢ of a triaxial ellipsoid whose surface area is equal to the surface area of the real body.
Besides condition (3), one also retains relations (1) and (4). Under assumptions made for the calculation
of parameters R and n, we obtain formulas of the (12) kind with ®(k; ,; Ky 3) replaced by a new function
(Table 3)

1

V 2af (k1,2? ky,s)

@, (k1,2§_ k1,3) == ' (27)

anad f(ky o k1,3) defined by relation (7).
Expressions (12) and (27) are valid for any dimensions ratios 0 =k, =1l and 0 sk ;= 1.

A comparison between exact and approximate values of the steady-state temperature in bodies con-
sidered here indicates that the maximum error in calculating the center and the mean-over-the-volume
temperature is not greater than 25% when k , ~ 0.4-0.3 and k; 3 ~ 0.4-0.3, then decreases fast at other
values of these ratios (Fig. 1). It must be noted that an elhpsmd selected as one reference model does
not yield precise transitions to the extreme forms of cylinder and plate, In those latter cases the error
in calculating the center temperature does not exceed 7-12%.

Thus, the sequence of steps in determining the characteristic dimension and the form factor of a
body reduces to: deriving relations (6) from the given surface area S and volume V of the real body with
characteristic dimensions 2L, 2L,, 2L, then classifying the body into (24), (25), or (26). Depending on
the class, one uses formula (12), (21), or (23) for calculations. A rougher estimate of R and n can be
made according to formulas (12) and (27) at any dimensions ratios k; , and ky ;.
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